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Microscopic semiflexible filaments suspended in a viscous fluid are widely encountered in biophysical
problems. The classic example is the flagella used by microorganisms to generate propulsion. Simulating the
dynamics of these filaments numerically is complicated because of the coupling between the motion of the
filament and that of the surrounding fluid. An attractive idea is to simplify this coupling by modeling the fluid
motion by using Stokeslets distributed at equal intervals along the model filament. We show that, with an
appropriate choice of the hydrodynamic radii, one can recover accurate hydrodynamic behavior of a filament
with a finite cross section without requiring an explicit surface. This is true, however, only if the hydrodynamic
radii take specific values and that they differ in the parallel and perpendicular directions leading to a caterpil-
larlike hydrodynamic shape. Having demonstrated this, we use the model to compare with analytic theory of
filament deformation and rotation in the small deformation limit. Generalization of the methodology, including
application to simulations using the Rotne-Prager tensor, is discussed.
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I. INTRODUCTION

Microscopic biological filaments moving in a low Rey-
nolds number environment are fundamental to the function-
ing of organisms. Typical examples include flagella and cilia
in the field of microorganism motility �1–3�. Understanding
the interplay between the filament and its surroundings has
notable biological implications in the context of the incipient
stages of life �4� not to mention the design and development
of fabricated microswimmers �1,5�. Other biological con-
stituents whose statics and dynamics are critical in cellular
function include biopolymers such as microtubules �6,7�. All
of these examples have one common feature: the biological
component is relatively stiff and has a high aspect ratio �the
length greatly exceeding the width�. Mechanically these sys-
tems exhibit behavior indicative of flexible filaments. The
collective complexity of the molecular structure manifests
itself simply as an effective bending elasticity. This being the
case, one can gain insight by studying inextensible flexible
filaments, which serve as a surprisingly good approximation
to more realistic descriptions �8�.

The interesting counterintuitive behavior of biological
systems is often due to the interaction of the body with its
viscous environment �1,9,10�. For example, a one-armed
swimmer tries to propel itself by waving a stiff appendage,
but it will go nowhere in the absence of inertia �low Rey-
nolds number�. However, this is a perfectly viable means of
propelling one’s own body in a swimming pool �high Rey-
nolds number�. Resistive force theory �11� is frequently used
to mimic this interplay approximating the interaction as a
local relationship between the force and velocity. For theo-
retical investigations, it is useful in that it is more frequently

analytically tractable. Hydrodynamic effects, however, are
long range and scale inversely with distance rendering this
local description quite a limited one. In fact, the very sim-
plest example—a flexible filament in a static external field—
yields rich dynamic behavior that is impossible to predict
using resistive force theory �10,12,13�. Not surprisingly, in-
corporating the coupling between the body and the fluid is
also significant for more sophisticated systems such as the
growth of liquid crystals �14�.

With this in mind, here we describe a simple and compu-
tationally efficient simulation model of a flexible filament
immersed in a viscous fluid. The various force contributions
are described in detail. In a simulation, at a small additional
computational cost, one is not limited to resistive force
theory but can use the more accurate Stokesian description
that takes into account the body-fluid coupling. Representing
a filament as a sequence of “Stokeslets,” or point forces act-
ing on the fluid, is not new �10,12,15,16�; however, we show
in this paper that agreement between slender body theory and
the continuum limit of the discrete Stokesian hydrodynamic
force is conditional on the choice of a tensor hydrodynamic
radius with specific values relative to the bead spacing. This
is in contrast to previous work where the hydrodynamic ra-
dius is set to exactly half of the bead spacing, which is re-
ferred to as the “shish kebab” model �17�. We show that by
choosing the hydrodynamic radius appropriately, we are not
limited to infinitely slender bodies; instead, we can accu-
rately simulate systems that have a realistic aspect ratio such
as a flagella which can have a diameter of a few percent of
the filament length �2�.

II. FILAMENT MODEL

We describe a model filament as a collection of equally
spaced points along a curve. All forces and masses are con-*aimee.bailey06@imperial.ac.uk
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centrated at the site locations, which we will refer to as beads
using conventional nomenclature. Three types of forces—
elasticity, hydrodynamics, and tension—form the basis of the
model. External forces relevant for a specific application can
easily be added.

A. Elastic forces

The filament evolving under elasticity will be penalized
for deviation from the lowest energy conformation. If we
take the ground state of the elastic filament to be a straight
line, the continuous equation for the elastic energy is an in-
tegral over the entire contour length of the square of the
curvature ��� �18�,

Ue =
�

2
�

−l

l � �2r

�s2�2

ds =
�

2
�

−l

l

�2ds . �1�

The position of the filament is denoted by r. The contour
length �s� spans from −l to l, where L=2l. The constant � is
the elastic flexure or bending rigidity. This result is from
continuum elasticity theory but our filament is actually rep-
resented as a discrete collection of connected beads separated
by a spacing of b=L / �n−1�. We introduce the variable �,
which is the deviation of the tangent from the straight line of
adjacent segments at bead i given by

cos��i� =
ri−1,i · ri,i+1

b2 , �2�

where rij =r j −ri. Relating the local radius of curvature to the
angle � by the cosine rule, we have

�i
2 =

2

b2 �1 − cos��i�� . �3�

Using this relationship, the discrete counterpart of Eq. �1� is

Ue =
�

b
�
i=1

n−1

�1 − cos��i�� . �4�

The elastic forces are the gradient of Eq. �4� with respect to
position.

In our model the filament has a fixed segment length
meaning b is constant �see Sec. II C�. Therefore, no elastic
energy can be stored in the form of axial extension/
compression. The filament simply has an energetic incentive
to remain straight. This is analogous to writing Eq. �1� with a
Lagrange multiplier term to enforce local length constraints.
Experiments measuring force-extension curves indicate the
Kratky-Porod wormlike chain model is a good description of
biofilaments and proteins �19–22�. Therefore, our combina-
tion of a bending penalty plus length constraints is justified.

B. Hydrodynamic forces

In order to mimic the interaction of the filament sub-
mersed in a viscous fluid, we need to include hydrodynamic
forces. Solving the fluid flow equations exactly with a stick
boundary condition in a dynamic simulation, during which
the shape evolves, is a computationally daunting task. Alter-

natively, resistive force theory �11� provides a much simpli-
fied description, but there are many instances where one can-
not neglect the hydrodynamic coupling �12,14�.
Conveniently, we will show that the solution of the flow
equations can be approximated by treating the continuous
object as a collection of discrete Stokeslets or point forces.
At arbitrarily high Stokeslet density, the continuous form of
the object is recovered. For example, the hydrodynamic
force acting on our filament can be modeled using a line of
sufficiently numerous Stokeslets to recreate the behavior of a
continuous curve. An advantage of this methodology, in ad-
dition to being computationally tractable for simulations over
long time scales, is that unbounded geometries can be con-
sidered.

The hydrodynamic force in our model is defined by

FiH = − ��0
�n̂n̂ + �0

� p̂p̂� · �vi − viH� . �5�

The vector n̂�p̂� is the unit direction normal �perpendicular�
to the filament. The tensor �̂0 is the bead friction, where
�0

����=6��a����. The constant � and tensor â are the fluid
viscosity and the hydrodynamic bead radii, respectively.
Note that â are not real radii, in that the beads in the model
have no spatial extension. Rather, they are parameters dictat-
ing the friction strength parallel and perpendicular to the
filament axis. The term vi is the velocity of the filament at
bead i and viH is the velocity of the fluid at the same location.

Using the Stokeslet form for the fluid velocity, we have

viH =
1

8��
�
i�j

	 F j


rij

+ F j ·

rijrij


rij
3
� , �6�

which gives the following hydrodynamic force:

FiH = − ��0
�n̂n̂ + �0

� p̂p̂� · �vi −
1

8��
�
i�j

	 F j


rij

+ F j ·

rijrij


rij
3
� .

�7�

Fi is the force on bead i. Equation �6� is derived by elimi-
nating the convective terms in the Navier-Stokes equations.
In other words, it is consistent with the Reynolds number
being low, with fluid inertia neglected. In the limit that the
force mediated by the fluid is negligible, the hydrodynamic
force reduces to resistive force theory with a tensor bead
friction,

FiH = − ��0
�n̂n̂ + �0

� p̂p̂� · vi. �8�

C. Length constraints

In order to fix the contour length, we use SHAKE meth-
odology to incorporate length constraints in a dynamic simu-
lation �23�. The distance between all connected beads is held
at a constant value to within a predefined degree of accuracy.
For all results presented here, we set the accuracy to be a
relative bead separation 
rij
 /b to within 10−12. Using
SHAKE methodology, there is an array of numerical recipes
one can use to calculate the Lagrange multipliers that make
up the constraint forces. For a linear geometry in which each
bead is connected to at most two nearest neighbors, such as
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the geometry we are considering here, we use and recom-
mend MILC SHAKE �matrix inverted linearized constraints
SHAKE�, which can be orders of magnitude faster than
SHAKE iteration �24�.

D. Integrating the equations of motion

Now that all forces have been identified, what remains to
be specified is an appropriate integration scheme to evolve
the equations of motion in a dynamic simulation. With
velocity-dependent forces present, one cannot use the stan-
dard velocity Verlet algorithm �25�. Instead, one can derive
an update scheme using the Trotter factorization of the Liou-
ville propagator, the same method used to derive the revers-
ible, multiple time scale, molecular-dynamics scheme refer-
ence system propagator algorithms �RESPA� �26�.
Furthermore, Kalibaeva et al. demonstrated that one can
combine a novel update scheme for a particular set of
velocity-dependent forces with SHAKE methodology for ap-
plying constraints �27�. Details of the procedure can be
found in their paper.

Here we use an alternate method to simulate the time
evolution of the system. We integrate the bead equation of
motion

m
dvi

dt
= Fi, �9�

where m is the mass of a single bead and Fi is the total force
�now including the hydrodynamic force� acting on bead i.
This is a Langevin equation because the hydrodynamic force
can be separated in Eq. �9� into terms that do and do not
depend on the velocity

m
dvi

dt
= Fi − �0vi. �10�

In this section we use a scalar bead friction �0 for clarity,
although we use the tensor form for our simulation model.
Here, the forces Fi are independent of the velocity �including
the inhomogeneous part hydrodynamic force; see Eq. �7��.
This being the case, we can rewrite the velocity Verlet algo-
rithm as an implicit scheme for the new velocity. It is

ri�t + dt� = ri�t� + dtvi�t� +
dt2

2m
Fi�t� ,

vi�t + dt� =
2m − �0dt

2m + �0dt
vi�t� +

dt

2m + �0dt
�Fi�t� + Fi�t + dt�� ,

�11�

where dt is the time step. Since we are neglecting inertia in
the fluid, the model is only consistent if the inertia of the
filament is also negligible. To achieve this we impose the
condition that the inertial time scale ��m /�0� is very much
shorter that all other times scales in the problem. We then
verify that the time scales are separated to a sufficient extent
that the inertial time does not influence the results. Alterna-
tively, one could directly neglect the inertial term in Eq. �10�
prior to integration. The two approaches would yield equiva-

lent results, but we use the present method for facile combi-
nation with pre-existing molecular-dynamics code. Further
details can be found in Refs. �8,28,29�. Although one could
use higher-order methods, we have found this simple integra-
tion scheme sufficient and robust. As described here, the
simulation model is deterministic. Thermal fluctuations in
principle can be incorporated to study a wider range of ap-
plications; however, we use molecular dynamics in part be-
cause one can incorporate geometric constraints in a straight-
forward manner.

III. MODEL PARAMETRIZATION

We want to evaluate the validity of using a collection of
discrete Stokeslets to approximate the behavior of a continu-
ous filament. Relevant analytical solutions that can be used
for comparison are numbered and only manageable in the
regime of small deformation. Our comparisons to theoretical
results are likewise restricted to this regime. Cox, Batchelor,
and Tillet carried out seminal theoretical work on a slender
elastic body undergoing sedimentation with which some
comparisons can be made �30–32�. In this section, we param-
etrize our model specifically to recover their theoretical re-
sults. We discuss how the methodology can be generalized to
match other expressions in Sec. V.

A. Collective friction coefficients

Take the example of a filament experiencing a uniform
external force density perpendicular to its axis denoted by
fy�=Fj

y /b�. Equation �7� for this example is

FiH = − �0
�vi +

3a�fy

4
	�

j=1

i−1
1

j
+ �

j=1

n−i
1

j
� . �12�

The sum in Eq. �12� can be estimated using the definition of
the Euler-Mascheroni constant, k��0.5772�,

k = lim
m→	

��
j=1

m
1

j
− ln�m� . �13�

Although this definition is for an infinite series, the following
finite sum is a good approximation:

�
j=1

m
1

j
� ln�m� + k . �14�

For instance, for m=100, the highest order omitted term
�1 /2m� in the harmonic series is already two orders of mag-
nitude smaller than k. With this approximation, we can write
Eq. �12� in terms of the dimensionless contour length,
x�=−1+ �i−1��b / l��, spanning the interval �−1,1�. The result
is

FH�x� = − �0
�v�x� +

3a�fy

4
ln	 1 − x2

�
b/l�2� , �15�
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where 
=e−k.
Consider the steady-state solution, when the total hydro-

dynamic force matches the external force �−Fy =FH�. All sec-
tions of the filament move with the same velocity, the termi-
nal or steady-state velocity, which we label U. Using L
�nb for large n, we have

− bfy = − �0
�U +

1

L
�

−1

1 �3a�fy

4
�ln� 1 − x2

�
b/l�2�dx .

�16�

The logarithmic term diverges at the ends but is integrable.
The solution is

�0
�U = Fy� b

L
+

3a�

2L
�ln	 L


b
� − 1� . �17�

The collective friction coefficient ���� of a sedimenting fila-
ment can be evaluated by taking the quotient of the total
imposed external force and the resultant terminal velocity,

�� =
Fy

U
=

4��L

ln�L/�
b�� +
2b

3a�
− 1

. �18�

From theory �30�, the friction coefficient of a slender body is

�̄� =
4��L

ln�L/r� + C2
+ O�ln−3�L/r�� , �19�

where C2 depends on the cross-sectional shape. For a uni-
form circular cross section C2=ln�2�−1 /2. When the fila-
ment radius is chosen to be r /b=
�0.562 and the hydrody-
namic radius is chosen to be a� /b=4 / �3�2 ln 2+1��
�0.559, our result is in agreement with theory �to the order
of error in the equations� for the case of sedimentation per-
pendicular to the axis.

Starting with Eq. �7� and instead considering the scenario
of the filament experiencing a uniform force density parallel
to its axis, we find that the collective friction coefficient is

�� =
2��L

ln�L/�
b�� +
b

3a� − 1

. �20�

From theory,

�̄� =
2��L

ln�L/r� + C1
+ O�ln−3�L/r�� , �21�

where C1 is a coefficient that again depends on the cross-
sectional shape. For a uniform circular cross section, C1
=ln�2�−3 /2. For the case of axial sedimentation, our results
match theory when r /b=
�0.562 and a� /b=2 / �3�2 ln 2
−1���1.73.

B. Relationships between a, r, and b

In order for the Stokesian hydrodynamic treatment to be
consistent with the results from slender body theory, the hy-
drodynamic and the filament radii must be chosen appropri-

ately. In the shish kebab model both a and r are chosen to be
simply b /2 �17�. However, our analysis indicates that there is
a more consistent choice.

First, we determined that when the filament radius using
the Stokesian treatment is considered to be r /b=
, it is de-
pendent on the degree of discretization �33�. As the discreti-
zation increases, the bead spacing decreases and the model
mimics a more slender filament. The more interesting result
is that two hydrodynamic radii are required to recover the
correct dynamic behavior in both the perpendicular and par-
allel directions. In studies using resistive force theory �Eq.
�8��, a popular choice for the ratio of the bead friction coef-
ficients is �0

� /�0
�=0.5 equivalent to the ratio of the collective

friction coefficients in the limit of an infinitely slender body.
In our model, which includes filament-fluid coupling, the
ratio of the bead friction coefficients is �0

� /�0
��3.09. This is

counterintuitive because the collective parallel friction coef-
ficient of the filament is actually always lower than the per-
pendicular. But, as we will show in Sec. IV, the friction co-
efficients for collective filament motion in each direction are
recovered to a greater degree of accuracy using these values.

Given the effective radius for parallel movement is
around three times that for perpendicular movement, the re-
sultant hydrodynamic shape of the filament is caterpillarlike
having the basic features of an ordinary garden cabbage
looper. Therefore, we refer to it as “caterpillar” Oseen hydro-
dynamics. An illustration of the hydrodynamic shape is
shown in Fig. 1.

C. Inhomogeneous hydrodynamic force

As a further confirmation that our results are consistent,
there is an additional theoretical result with which we can
compare: the �inhomogeneous� friction coefficient along the
contour length during sedimentation �30,34�. The result for
perpendicular sedimentation, rewritten in terms of the vari-
able definitions in this paper, is

fy

2��U
= −

2

ln���
−

1 + 2 ln�2� + ln�1 − x2�
ln2���

+ O�ln−3���� ,

�22�

FIG. 1. A schematic of the friction strength using the �a� cater-
pillar and �b� shish kebab models.
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where the constant � is the slenderness parameter defined as
�=r / l.

Defining �̃=
b / l, we can write the steady-state friction
from Eq. �15� as

�0
�U = bfy +

3a�fy

4
ln	1 − x2

�̃2 � . �23�

We expand Eq. �23� in terms of ln−1��̃� to get

fy

2��U
= −

2

ln��̃�
−

4b

3a�
+ ln�1 − x2�

ln2��̃�
+ O�ln−3��̃�� . �24�

This is equivalent to Eq. �22� when the following two con-
ditions hold:

�̃ = � , �25�

a�

b
=

4

3�2 ln�2� + 1�
. �26�

Therefore, the filament radius is r /b=
 and the effective
hydrodynamic radius is a� /b=4 / �3�2 ln 2+1��. The analysis
also holds for a comparison of the hydrodynamic force dur-
ing parallel sedimentation.

These conclusions are consistent with those from the
analysis in Sec. III A, where we calculated the collective
friction coefficient for sedimentation in the perpendicular di-
rection. Confirmation that the correct inhomogeneous hydro-
dynamic force is recovered, even while neglecting higher-
order terms in Eq. �19�, is significant since it is this variation
in the hydrodynamic force that causes the deformation of the
flexible body.

IV. RESULTS FROM SIMULATION

To compare our computational model with slender body
theory, a series of simulations was carried out. For all calcu-
lations, the starting configuration is a single filament oriented
along the x axis. The number of beads n �and the resultant
filament slenderness� in this case is variable. Each pair of
neighboring beads is constrained to be at a separation b
=L / �n−1�. The velocity was initialized to zero. We intro-
duce a dimensionless force

B =
L3F

�
, �27�

which weighs the relative magnitudes of the elastic and ex-
ternal forces. When B�1, elastic forces dominate and the
filament remains largely straight. When B1, the magnitude
of the external forces is large enough for significant defor-
mation to occur.

The test case we consider is a full dynamic simulation of
sedimentation, both parallel and perpendicular to the primary
axis of the filament. A uniform force density was applied to
the system and the equations of motion integrated until the
body reached a constant terminal velocity. From this steady-
state configuration, we analyzed the forces. To give an idea
of the computational cost, a typical simulation of a filament

modeled with 80 beads takes less than 1 h on a computer
with an Intel Pentium D processor �3.00 GHz� running Fe-
dora Linux. To allow comparison with theory the magnitudes
of the external force density and the flexure were chosen
such that the deflection amplitude is small �well within 1%
of the length� in the steady-state configuration. In terms of
the dimensionless force, all simulations were carried out with
B�0.01. For the model this is not a necessary restriction; the
high B regime can also be studied. The length L for all simu-
lations was set to unity.

The collective friction coefficients calculated from our
simulations are plotted in Fig. 2 along with the theoretical
values from Eqs. �19� and �21�. Our model shows excellent
agreement to theory even for the very smallest aspect ratio.
In contrast, calculations using the shish kebab parametriza-
tion do not. The values for the case of sedimentation perpen-
dicular to the axis are reproduced accurately because the hy-
drodynamic radius is chosen to be a /b=1 /2, which is very
close to our value of a� /b=0.559. The collective friction
coefficient that results from motion parallel to the axis, how-
ever, only matches in the limit that the body is infinitely
slender. The results in the limit of a moderate cross section
�L /d�50� differ significantly from theory. The discrepancy
is over 15% for the lowest aspect ratio considered.

We can also compare the inhomogeneous friction coeffi-
cient as a function of contour length that was introduced in
Sec. III C. We include this comparison for completeness
even though we expect the simulation results from the cater-
pillar and shish kebab models to be quantitatively similar
given that only perpendicular motion is considered for this
scenario. The theoretical expression �Eq. �22�� and results
from simulation are plotted in Fig. 3. Both the caterpillar and
shish kebab parametrizations show excellent agreement over-
all, although the deviation from theory is minimized when
using a tensor hydrodynamic radius. The slight deviation is
due to the fact that we are comparing our model to only the
leading order term from theory, although our simulation re-
sults contain higher-order contributions. The higher-order
terms appear to have little cumulative effect on the collective
friction coefficient results in Fig. 2.

10 100
L/d

1

2

3

4

γ/
ηL

Theory
Simulation (C)
Simulation (SK)

0

25

50

%

δ(1-γ
r
)

Perpendicular

Parallel

FIG. 2. Bottom: simulation results for the collective friction
coefficient versus aspect ratio of a sedimenting filament in steady
state using caterpillar �C� and shish kebab �SK� parametrizations.
Slender body theory expressions are included for comparison. Top:
relative error in �1−�r�, where �r=�� /��.
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Xu and Nadim extended the groundwork of Cox, Batch-
elor, and Tillett and determined an expression for the y de-
flection by solving the differential equation of beam deflec-
tion from elasticity theory by using the appropriate Green’s
function �13�. From Eq. �7� in their article, the deflection is
given by

y�x� = −
C

24
��1 + x�4ln�1 + x� + �1 − x�4ln�1 − x�

− 	13

6
+ 2 ln 2�x4 − �1 + 12 ln 2�x2 . �28�

Please note that there is a typographical error in the original
paper that has been corrected here �35�. The constant C is

C =
2��Ul4

EI ln2���
, �29�

where EI is the Young’s modulus times the second moment
of area, which together constitute the beam flexure �. The
ranges of the parameters for which the deflection was calcu-
lated are B=10−5−10−1 and L /d�20–400. All parameter
sets investigated yielded the same dimensionless deflection.
Two representative data sets are plotted in Fig. 4. Using the
caterpillar model, when the theoretical dimensionless deflec-
tion is scaled by a constant factor of approximately 1.15, the
theory matches our simulation. The scaling factor is 1.14
using the shish kebab model. The minor quantitative discrep-
ancy could be due to the fact that the theoretical deflection
�Eq. �28�� is calculated from a differential equation that does
not include a Lagrange multiplier to impose constant length.

In this way, our simulation model is a slightly different de-
scription. No extension whatsoever can be accommodated in
the axial direction. It is significant to note that both the the-
oretical and simulation results agree in the prediction that the
functional form of the deflection is independent of slender-
ness.

Xu et al. also derived an expression for the torque acting
on a flexible slender body. The torque will cause the filament
to rotate during sedimentation until a final orientation is
achieved in which the filament’s centerline is perpendicular
to the force axis. Their result is

T = CT
2�2�2U2l5 sin�2��

EI ln4���
= �0 sin�2�� . �30�

The variable � is the angle between the filament axis and x̂
when the external force is applied in the ŷ direction. CT is

CT = �
0

1

y�x��2 ln 2 − 2 − ln�1 − x2��dx � 0.016 61 �31�

calculated by numerical integration. The normalized torque
as a function of � is plotted in Fig. 5 along with the theoret-
ical functional dependence. For the functional forms the re-
sults are in excellent agreement. However, the normalization
constant �0� from Fig. 5 is different from �0 from theory. This
is expected since the y deflection from our simulation results
differs slightly from the analytic result that was used in the
derivation of Eq. �30�. Simulation results of the normalized
torque were quantitatively equivalent using both the caterpil-
lar and shish kebab parametrizations, but the normalization
constant �0� differed.

V. DISCUSSION AND CONCLUSIONS

We described a simulation model for an elastic filament
that accurately accounts for intrafilament hydrodynamic in-
teractions. We showed that the discrete Stokesian treatment
encapsulates the physics of a continuous filament of finite
cross section when a specific tensor bead friction is chosen
without the need for an explicit surface. Furthermore, in the
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FIG. 3. �Color online� The variation in the friction as a function
of contour length from theory and from simulations using caterpil-
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limit that the inhomogeneity in the friction coefficient is ne-
glected, the caterpillar model reduces to simple resistive
force theory with a tensor bead friction coefficient. It follows
from our analysis that the bead spacing dictates the local
radius of the filament. Therefore, when the two consecutive
beads are not constrained but instead connected by a simple
spring, the interbead distance and, therefore, the resultant
filament radius is variable �15,16�. By applying length con-
straints to the interbead distance, as we do in this model, the
radius is constant along the contour length of the filament.

The caterpillar model accurately simulates the dynamics
of filament sedimentation for all aspect ratios considered,
whereas the shish kebab parametrization only recovers the
correct collective friction coefficients for an infinitely slender
body �infinitely high bead density�. A filament in nature may
have a diameter a few percent of the filament length �1–3�.
There is significant deviation from the correct hydrodynamic
behavior in this regime using the shish kebab parametriza-
tion, which may be nontrivial. The ratio of the two friction
coefficients is particularly important in the field of microor-
ganism motility. The swimming speed �and thrust� of an ac-
tivated filament, for instance, is proportional to �1−�� /���
�2�. Any deviation in this ratio will have significant effects
on the motility. We plotted the relative error in this quantity
in the top graph of Fig. 2. For an aspect ratio of L /d
�1 /50, the error is 16% and 2% for the shish kebab and
caterpillar models, respectively. Furthermore, the reorienta-
tion times of a filament in a uniform external field in Ref.
�12� differ by 30% for the shish kebab and caterpillar mod-
els. Although one would reach the same general conclusions
for scaling behavior using either parametrization, the onset
of the observation of the metastable “W”-shape state in their
studies would likely be appreciably affected. Whether a ten-
sor hydrodynamic radius is necessary should be evaluated on
a case-by-case basis.

Our simulation results for the dimensionless deflection of
a filament sedimenting perpendicular to its axis agree with
the theoretical prediction that the steady-state shape does not
depend on the slenderness of the filament. Also, calculations
of the torque acting on a misaligned filament support that the
functional dependence is sin�2��. We observed a modest dis-
crepancy in the magnitude of the dimensionless deflection
between our simulations and the theoretical results. A poten-
tial source of the difference may be that the theoretical de-
flection is calculated from a differential equation that does
not explicitly include a Lagrange multiplier to enforce con-
stant length, whereas our simulation model does not accom-
modate any degree of axial extension.

We have chosen the hydrodynamic radius specifically to
recover the results of a body with a uniform circular cross
section. But, it is possible to choose it instead to match the
collective parallel and perpendicular friction coefficients for
a different cross-sectional radius profile �30�. One simply has
to use different values for the constants C2 and C1 in Eqs.
�19� and �21�, respectively. This means that the dynamic re-
sponse actually depends on the specific geometry considered.
We chose a uniform circular cross section because it is a
commonly used starting point for the shape of microtubules,
nanotubes, cilia/flagella, and fabricated filament-based mi-
croswimmers.

The methodology we present here can be further general-
ized in two important ways. First, we have chosen r, a�, and
a� specifically to match expressions from slender body
theory; however, as the filament approaches an aspect ratio
of unity, the body is no longer slender and these equations
are no longer valid. For very thick filaments, one could in-
stead match to more accurate numerical results. We success-
fully applied our methodology to the numerical expressions
listed in Ref. �36� relevant for aspect ratios of L /d�2–30.
Specifically, we equate our Eqs. �18� and �20� to their corre-
sponding numerically derived expressions for the friction co-
efficients to determine optimal values for the hydrodynamic
radii. Please see Ref. �37�. Using these values, we can report
that agreement between simulations and the expressions in
Ref. �36� is quantitatively similar to that shown in Fig. 2
using the original parametrization with slender body theory
as the reference point. This analysis demonstrates a signifi-
cant numerical advantage. Namely, that for an equivalent
number of beads �i.e., computational expense� one can pa-
rametrize the same model/description to get two different
physical limits: the slender limit or the “thick” limit.

Second, the model can be extended beyond Oseen hydro-
dynamics. The Oseen tensor is accurate in the far field but
diverges for two spheres that overlap. The Rotne-Prager �RP�
tensor is a higher-order description that is widely used be-
cause it reduces the error due to singularities of two beads
that closely approach �38�. For a single filament simulation,
however, this point is mute. The beads are constrained to be
a specific separation apart. Also, the model is specifically for
a filament whose length is well below its persistence length
rendering the risk of overlap nonexistent unless there is an
exceptionally high external field. Only if one is considering a
system with more than one filament must one worry about
overlap. In this case, it is possible to apply caterpillar meth-
odology to simulations using the RP tensor. Using the RP
tensor, we went through the same analysis described in Sec.
III A to determine expressions for r, a�, and a�. Results are
quoted in Ref. �39�. Since the RP tensor is not the next term
in a systematic expansion of the hydrodynamic flow due to a
force distributed on a cylinder, there is no reason to neces-
sarily expect a numerical improvement in the friction coeffi-
cients with respect to the Oseen tensor. Indeed, we found that
for single filament simulations, it is advantageous to use
Oseen hydrodynamics because one can recover friction co-
efficients to a marginally higher degree of accuracy at a re-
duced computational expense �roughly a factor of 1/2�. How-
ever, if the dynamics of multiple filaments are being
investigated and collision is likely, the RP tensor with the
parameters given in Ref. �39� can be used to prevent error
due to singularities from overlap while still improving the
dynamic behavior compared to using a scalar bead friction.

Elastic, hydrodynamic, and tension forces form the basis
for the model. However, incorporating other forces is trivial.
Biological molecules are frequently charged. With this
model, one could investigate the dynamics of a charged fila-
ment such as a microtubule in an electric field, for example
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�6,7�. The scope of problems one can investigate using the
deterministic simulation model presented here, in which ther-
mal fluctuations are neglected, is delineated by the condition
that the time scale of diffusion is significantly longer than the
time scale associated with the motion of interest. In practice
this restricts its applicability to relatively stiff filaments.
Nonetheless, similar considerations of parametrizing the
Stokeslet hydrodynamic description apply when one includes
thermal fluctuations. Such a model can then address an even

wider class of important problems notably the dynamics of
DNA fragments.
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